## MATH2048 Honours Linear Algebra II

## Midterm Examination 1

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $V=M_{2 \times 2}(\mathbb{R})$. Define $T: V \rightarrow \mathbb{R}$ by $T(A)=A_{11}-A_{22}$ and $U: P_{1}(\mathbb{R}) \rightarrow V$ by $U(p)=\left(\begin{array}{cc}0 & p(0) \\ -p(0) & p(1)\end{array}\right)$.
(a) Find a basis $\beta$ for $N(T)$ and a basis $\gamma$ for $R(U)$.
(b) Find the dimensions of $N(T), R(U), N(T) \cap R(U)$ and $N(T)+R(U)$.
2. Consider the linear operator $T$ defined by

$$
\begin{aligned}
T: M_{2 \times 2}(\mathbb{R}) & \rightarrow M_{2 \times 2}(\mathbb{R}) \\
A & \mapsto A-A^{T}
\end{aligned}
$$

Let $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be the standard ordered basis for $M_{2 \times 2}(\mathbb{R})$.
(a) Find an ordered basis $\gamma_{1}$ for $N(T)$ and an ordered basis $\gamma_{2}$ for $R(T)$. Show that $\gamma=\gamma_{1} \cup \gamma_{2}$ is an ordered basis for $M_{2 \times 2}(\mathbb{R})$.
(b) With the $\gamma$ that you found in (a), find the matrices $A=[T]_{\gamma}$ and $B=\left[I_{M_{2 \times 2}(\mathbb{R})}\right]_{\gamma}^{\beta}$. Represent $[T]_{\beta}$ by $A$ and $B$ using change of coordinates (No need to do the computation).
3. Consider the linear transformation

$$
\begin{aligned}
T: P(\mathbb{R}) & \rightarrow P(\mathbb{R}) \\
p(x) & \mapsto p(x+1)
\end{aligned}
$$

Note that $P(\mathbb{R})=\bigcup_{n=0}^{\infty} P_{n}(\mathbb{R})$. Let $\left.T\right|_{P_{n}(\mathbb{R})}: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ be the restriction of $T$ on $P_{n}(\mathbb{R})$. Let $\beta_{n}$ be the standard ordered basis for $P_{n}(\mathbb{R})$ for non-negative integer $n$.
(a) Prove that $T\left(\beta_{n}\right)$ is a basis for $P_{n}(\mathbb{R})$, that is $\left.T\right|_{P_{n}(\mathbb{R})}$ is onto. Deduce that $T$ is onto. (Hint: The Binomial Theorem $(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}$.)
(b) Use (a) to show that $\left.T\right|_{P_{n}(\mathbb{R})}$ is one-to-one. Deduce that $T$ is one-to-one.
4. Let $C^{\infty}(\mathbb{R})$ be the vector space of all smooth real functions (infinitely differentiable) over $\mathbb{R}$. Let $V$ be the subspace of $C^{\infty}(\mathbb{R})$ defined by:

$$
V=\left\{f \in C^{\infty}(\mathbb{R}): f(0)=f^{\prime}(0)=\ldots=f^{(n)}(0)=0\right\}
$$

where $f^{(j)}$ denotes the $j$-th derivative of $f$.
(a) Define $\Psi: C^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}^{n+1}$ by $\Psi(f)=\left(f(0), f^{\prime}(0), \ldots, f^{(n)}(0)\right)$. Show that $\Psi$ is onto.
(b) Define $\tilde{\Psi}: C^{\infty}(\mathbb{R}) / V \rightarrow \mathbb{R}^{n+1}$ by $\tilde{\Psi}(f+V)=\Psi(f)$. Use (a) to show that $\tilde{\Psi}$ is an isomorphism, i.e. well-defined, linear and bijective.
5. Let $U$ be a non-zero subspace of an infinite dimensional vector space $V$ over $F$. Let $L \subset U$ be a basis of $U$. Using Zorn's lemma, show that $L$ can be extended to a basis of $V$. Deduce that there exists a subspace $W$ of $V$ such that $V=U \oplus W$. Please explain your answer with all the details.

